Three -Dimensional Hydrodynamic Numerical Modeling of Galveston Bay using 3-D Adaptive Hydraulics Code (3D-ADH)

Gaurav Savant Christopher Wallen Christopher Hall

US Army Corps of Engineers BUILDING STRONG_®

Goals for 3D Modeling of Galveston Bay

- Develop a hydrodynamic ADH 3D modeling framework of Galveston Bay
- Evaluate framework with comparisons to observed data
- Use framework to evaluate:
 - > Oyster habitat suitability
 - Sediment fate modeling

ADH Philosophy

3D SW ADH

- Technological Leapfrogging of USACE capability for hydrodynamic and environmental modeling:
 - ADH is the only implicit mass conservative "Spatially and Temporally Adaptive Code" in production,
 - Utilizes vertical meshing that is neither Sigma or Z-grid based and hence, is not encumbered by the drawbacks of either,
 - Adaption in the horizontal and vertical allows for accurate representation of hydrodynamics as well as transport,
 - Conservation of fluid and constituent mass,
 - Ease of use: Generation of 3D from existing 2D meshes, execution on HPC, PC, multiple processor PC and others,
 - SEDLIB provides a library of sediment transport processes that are accessible by any hydrodynamic model not just ADH.
 - Wave Forcing

Technological Leap Ahead

Adapted Mesh

NAMA.

NWIN

••••••

2777

Vertical Adaption

BUILDING STRONG_®

3D SW ADH: Galveston Bay

- Important data rich estuary
- 64,333 initial nodes
- 269,507 initial elements
- Adaption "on" for navigation channel
- Maximum number of adapted nodes
 69,743

3D SW ADH: Galveston Bay

Galveston Bay 3D ADH Animation

3D SW ADH: Galveston Bay

Model Forcings

- ► Tide, salinity, winds
- River inflows (San Jacinto and Trinity)
- Cedar Point power plant inflow and outflow
- Accounting for Mississippi River long shore current
- Model spin up duration 4500 hrs (~ 0.5 Yr)
- Model simulation duration 1.0 yr
- # Processors: 2
- Run time: 2 days (no optimization attempted)

Model Evaluation Parameters

- Observation stations in both the navigation channel and shallow tidal areas
- Harmonic Analysis
- Salinity Comparison
- Velocity Comparison
 - Surface and Bottom Observations

Amplitude of Tidal Components

Harmonic Analysis – Lag and Phase Error

Salinity Comparison

Salinity Comparison

Depth Averaged Salinity Comparison

Station	Willmott Coefficient, d
S1	0.83
S2	0.75
S5	0.71
S5.5	0.96
S6	0.87
S12	0.96
S13	0.74
S14	0.98

$$d = 1 - \left[\sum_{i=1}^{N} (P_i - O_i)^2 / \sum_{i=1}^{N} (|P'_i| + |O'_i|)^2 \right], \quad 0 \le d \le 1$$
$$P'_i = P_i - \overline{O} \text{ and } O'_i = O_i - \overline{O}.$$

Pi is the model predicted value *Oi* is the observed value

Velocity Comparison

Velocity Comparison

Summary

 The ADH 3D Model framework provides US Army Corps of Engineers and other State/Federal/local agencies and Stakeholders with a modeling tool that can be applied to oyster habitat evaluation and sediment fate determination (ongoing).

Discussion

Contact Information:

Dynamic Solutions, LLC Gaurav Savant GSavant@dsllc.com (601) 634-3213

Christopher Wallen <u>cmwallen@dsllc.com</u> (865) 212-3331

US Army Corps of Engineers
BUILDING STRONG®